
https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 1 of 30

Chapter 3.6 Databases

3.6 (a) Flat files and relational databases

A database is an organized collection of data for one or more purposes, usually in
digital form. The data are typically organized to model relevant aspects of reality (for
example, the availability of rooms in hotels), in a way that supports processes
requiring this information (for example, finding a hotel with vacancies). This
definition is very general, and is independent of the technology used.

Originally all data were held in files. A typical file would consist of a large number
of records each of which would consist of a number of fields. Each field would have
its own data type and hold a single item of data. Typically a stock file would contain
records describing stock. Each record may consist of the following fields.

This led to very large files that were difficult to process. Suppose we want to know
which items need to be reordered. This is fairly straightforward, as we only need to
sequentially search the file and, if Number in Stock is less than the Reorder Level,
make a note of the item and the supplier and output the details.

The problem is when we check the stock the next day, we will create a new order
because the stock that has been ordered has not been delivered. To overcome this we
could introduce a new field called On Order of type Boolean. This can be set to True
when an order has been placed and reset to False when an order has been delivered.
Unfortunately it is not that easy.

The original software is expecting the original seven fields not eight fields. This
means that the software designed to manipulate the original file must be modified to
read the new file layout.

Further ad hoc enquiries are virtually impossible. What happens if management ask
for a list of best selling products? The file has not been set up for this and to change it
so that such a request can be satisfied in the future involves modifying all existing
software. Further, suppose we want to know which products are supplied by Food &
Drink Ltd.. In some cases the company's name has been entered as Food & Drink
Ltd., sometimes as Food and Drink Ltd. and sometimes the full stop after Ltd has
been omitted. This means that a match is very difficult because the data is
inconsistent. Another problem is that each time a new product is added to the
database both the name and address of the supplier must be entered. This leads to
redundant data or data duplication.

Field Name Data Type
Description String
Cost Price Currency
Selling Price Currency
Number in Stock Integer
Reorder Level Integer
Supplier Name String
Supplier Address String

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 2 of 30

The following example, shown in Fig. 3.6.a.1, shows how data can be proliferated
when each department keeps its own files.

Fig. 3.6.a.1

This method of keeping data uses flat files. Flat files have the following limitations.

• Separation and isolation of data

Suppose we wish to know which customers have bought parts produced
by a particular supplier. We first need to find the parts supplied by a
particular supplier from one file and then use a second file to find which
customers have bought those parts. This difficulty can be compounded if
data is needed from more than two files.

• Duplication of data

Details of suppliers have to be duplicated if a supplier supplies more than
one part. Details of customers are held in two different files.

 Duplication is wasteful as it costs time and money. Data has to be entered

more than once, therefore it takes up time and more space.

Purchasing
Department

Programs to
place orders

when stocks are
low

File containing Stock
Code, Description,

Re-order level, Cost
Price, Sale Price

Supplier name and
address, etc

Sales
Department

Programs to
record orders

from customers

File containing Stock
Code, Description,
Number sold, Sale

Price, Customer name
and address, etc.

Accounts
Department

Programs to
record accounts

of customers

File containing
Customer name and

address, amount
owing, dates of orders,

etc.

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 3 of 30

 Duplication leads to loss of data integrity. What happens if a customer

changes his address? The Sales Department may update their files but the
Accounts Department may not do this at the same time. Worse still,
suppose the Order Department order some parts and there is an increase in
price. The Order Department increases the Cost and Sale prices but the
Accounts Department do not, there is now a discrepancy.

• Data dependence

Data formats are defined in the application programs. If there is a need to
change any of these formats, whole programs have to be changed.
Different applications may hold the data in different forms, again causing
a problem. Suppose an extra field is needed in a file, again all
applications using that file have to be changed, even if they do not use that
new item of data.

• Incompatibility of files

Suppose one department writes its applications in COBOL and another in
C. Then COBOL files have a completely different structure to C files. C
programs cannot read files created by a COBOL program.

• Fixed queries and the proliferation of application programs

File processing was a huge advance on manual processing of queries.
This led to end-users wanting more and more information. This means
that each time a new query was asked for, a new program had to be
written. Often, the data needed to answer the query were in more than
one file, some of which were incompatible.

To try to overcome the search problems of sequential files, relational database
management systems were introduced.

A database management system (DBMS) is a software package with computer
programs that control the creation, maintenance, and the use of a database. It allows
organizations to conveniently develop databases for various applications. A database
is an integrated collection of data records, files, and other database objects. A DBMS
allows different user application programs to concurrently access the same database.
DBMSs may use a variety of database models, such as the relational model, to
conveniently describe and support applications.

The relational model for database management is a database model that was first
formulated and proposed in 1969 by Edgar F. Codd. The purpose of the relational
model is to provide a declarative method for specifying data and queries: users
directly state in simple sentences that what information the database contains and
what information they want from it, and let the database management system software
take care of describing data structures for storing the data and retrieval procedures for
answering queries.

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 4 of 30

3.6 (b) Relational Databases and Normalisation

Consider the following delivery note from Easy Fasteners Ltd.

Easy Fasteners Ltd

Old Park, The Square, Berrington, Midshire BN2 5RG

To: Bill Jones No.: 005
 London Date: 14/08/11
 England

 Product No. Description

 1 Table
 2 Desk
 3 Chair

Fig. 3.6. (b)1

In this example, the delivery note has more than one part on it. This is called a
repeating group. In the relational database model, each record must be of a fixed
length and each field must contain only one item of data. Also, each record must be
of a fixed length so a variable number of fields is not allowed. In this example, we
cannot say 'let there be three fields for the products as some customers may order
more products than this and other fewer products. So, repeating groups are not
allowed.

At this stage we should start to use the correct vocabulary for relational databases.
Instead of fields we call the columns attributes and the rows are called tuples. The
files are called relations (or tables).

We write the details of our delivery note as

DELNOTE(Num, CustName, City, Country, (ProdID, Description))

where DELNOTE is the name of the relation (or table) and Num, CustName, City,
Country, ProdID and Description are the attributes. ProdID and Description are put
inside parentheses because they form a repeating group. In tabular form the data may
be represented by Fig. 3.6 (b)2.

Num CustName City Country ProdID Description
005 Bill Jones London England 1 Table
 2 Desk
 3 Chair

Fig. 3.6 (b)2

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 5 of 30

This again shows the repeating group. We say that this is in un-normalised form
(UNF). To put it into 1st normal form (1NF) we complete the table and identify a key
that will make each tuple unique. This is shown in Fig. Fig. 3.6 (b)3.

Num CustName City Country ProdID Description
005 Bill Jones London England 1 Table
005 Bill Jones London England 2 Desk
005 Bill Jones London England 3 Chair
 Fig 3.6 (b)3

To make each row unique we need to choose Num together with ProdID as the key.
Remember, another delivery note may have the same products on it, so we need to use
the combination of Num and ProdID to form the key. We can write this as

DELNOTE(Num, CustName, City, Country, ProdID

, Description)

To indicate the key, we simply underline the attributes that make up the key.

Because we have identified a key that uniquely identifies each tuple, we have
removed the repeating group.

Definition of 1NF

A relation with repeating groups removed is said to be in First Normal
Form (1NF). That is, a relation in which the intersection of each tuple and
attribute (row and column) contains one and only one value.

However, the relation DELNOTE still contains redundancy. Do we really need to
record the details of the customer for each item on the delivery note? Clearly, the
answer is no. Normalisation theory recognises this and allows relations to be
converted to Third Normal Form (3NF). This form solves most problems. (Note:
Occasionally we need to use Boyce-Codd Normal Form, 4NF and 5NF. This is rare
and beyond the scope of this syllabus.)

Let us now see how to move from 1NF to 2NF and on to 3NF.

Definition of 2NF

A relation that is in 1NF and every non-primary key attribute is fully
dependent on the primary key is in Second Normal Form (2NF). That is,
all the incomplete dependencies have been removed.

In our example, using the data supplied, CustName, City and Country depend only on
Num and not on ProdID. Description only depends on ProdID, it does not depend on
Num. We say that

Num determines CustName, City, Country
ProdID determines Description

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 6 of 30

and write

Num → CustName, City, Country
ProdID → Description

If we do this, we lose the connection that tells us which parts have been delivered to
which customer. To maintain this connection we add the dependency

Num, ProdID → 0 (Dummy functional dependency)

We now have three relations.

DELNOTE(Num
PRODUCT(

, CustName, City, Country)
ProdID

DEL_PROD(
, Description)

Num, ProdID

)

Note the keys (underlined) for each relation. DEL_PROD needs a compound key
because a delivery note may contain several parts and similar parts may be on several
delivery notes. We now have the relations in 2NF.

Can you see any more data repetitions? The following table of data may help.

Num CustName City Country ProdID Description
005 Bill Jones London England 1 Table
005 Bill Jones London England 2 Desk
005 Bill Jones London England 3 Chair
008 Mary Hill Paris France 2 Desk
008 Mary Hill Paris France 7 Cupboard
014 Anne Smith New York USA 5 Cabinet
002 Tom Allen London England 7 Cupboard
002 Tom Allen London England 1 Table
002 Tom Allen London England 2 Desk

Country depends on City not directly on Num. We need to move on to 3NF.

Definition of 3NF

A relation that is in 1NF and 2NF, and in which no non-primary key attribute is
transitively dependent on the primary key is in 3NF. That is, all non-key elements are
fully dependent on the primary key.

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 7 of 30

In our example we are saying

Num → CustName, City, Country

but it is City that determines Country, that is

City → Country

and we can write

Num → City → Country
Num → CustName

We say that Num transitively functionally determines Country.

Removing this transitive functional determinacy, we have

DELNOTE(Num
CITY_COUNTRY(

, CustName, City)
City

PRODUCT(
, Country)

ProdID
DEL_PROD(

, Description)
Num, ProdID

)

Let us now use the data above and see what happens to it as the relations are
normalised.

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 8 of 30

1NF
DELNOTE
Num CustName City Country ProdID Description
005 Bill Jones London England 1 Table
005 Bill Jones London England 2 Desk
005 Bill Jones London England 3 Chair
008 Mary Hill Paris France 2 Desk
008 Mary Hill Paris France 7 Cupboard
014 Anne Smith New York USA 5 Cabinet
002 Tom Allen London England 7 Cupboard
002 Tom Allen London England 1 Table
002 Tom Allen London England 2 Desk

DELNOTE PRODUCT
Num CustName City Country ProdID Description
005 Bill Jones London England 1 Table
008 Mary Hill Paris France 2 Desk
014 Anne Smith New York USA 3 Chair
002 Tom Allen London England 7 Cupboard
 5 Cabinet

DEL_PROD
Num ProdID
005 1
005 2
005 3
008 2
008 7
014 5
002 7
002 1
002 2

Convert to
2NF

Convert to
3NF

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 9 of 30

DELNOTE DEL_PROD
Num CustName City Num ProdID
005 Bill Jones London 005 1
008 Mary Hill Paris 005 2
014 Anne Smith New York 005 3
002 Tom Allen London 008 2
 008 7
 014 5
 002 7
 002 1
 002 2

PRODUCT CITY_COUNTRY
ProdID Description City Country
1 Table London England
2 Desk Paris France
3 Chair New York USA
7 Cupboard
5 Cabinet

Now we can see that redundancy of data has been removed.

In tabular form we have

UNF

DELNOTE(Num, CustName, City, Country, (ProdID, Description))

1NF

DELNOTE(Num, CustName, City, Country, ProdID

, Description)

2NF

DELNOTE(Num
PRODUCT(

, CustName, City, Country)
ProdID

DEL_PROD(
, Description)

Num, ProdID

)

3NF

DELNOTE(Num
CITY_COUNTRY(

, CustName, City)
City

PRODUCT(
, Country)

ProdID
DEL_PROD(

, Description)
Num, ProdID

)

In this Section we have seen the data presented as tables. These tables give us a view
of the data. The tables do NOT tell us how the data is stored in the computer, whether
it be in memory or on backing store. Tables are used simply because this is how users

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 10 of 30

view the data. We can create new tables from the ones that hold the data in 3NF.
Remember, these tables simply define relations.

Users often require different views of data. For example, a user may wish to find out
the countries to which they have sent desks. This is a simple view consisting of one
column. We can create this table by using the following relations (tables).

PRODUCT to find ProdID for Desk
DEL_PROD to find Num for this ProdID
DELNOTE to find City corresponding to Num
CITY_COUNTRY to find Country from City

Here is another example of normalisation.

Films are shown at many cinemas, each of which has a manager. A manager may
manage more than one cinema. The takings for each film are recorded for each
cinema at which the film was shown.

The following table is in UNF and uses the attribute names

FID Unique number identifying a film
Title Film title
CID Unique string identifying a cinema
Cname Name of cinema
Loc Location of cinema
MID Unique 2-digit string identifying a manager
MName Manager's name
Takings Takings for a film

FID Title CID Cname Loc MID MName Takings
15 Jaws TF Odeon Croyden 01 Smith £350
 GH Embassy Osney 01 Smith £180
 JK Palace Lye 02 Jones £220
23 Tomb Raider TF Odeon Croyden 01 Smith £430
 GH Embassy Osney 01 Smith £200
 JK Palace Lye 02 Jones £250
 FB Classic Sutton 03 Allen £300
 NM Roxy Longden 03 Allen £290
45 Cats & Dogs TF Odeon Croyden 01 Smith £390
 LM Odeon Sutton 03 Allen £310
56 Colditz TF Odeon Croyden 01 Smith £310
 NM Roxy Longden 03 Allen £250

Converting this to 1NF can be achieved by 'filling in the blanks' to give the relation

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 11 of 30

FID Title CID Cname Loc MID MName Takings
15 Jaws TF Odeon Croyden 01 Smith £350
15 Jaws GH Embassy Osney 01 Smith £180
15 Jaws JK Palace Lye 02 Jones £220
23 Tomb Raider TF Odeon Croyden 01 Smith £430
23 Tomb Raider GH Embassy Osney 01 Smith £200
23 Tomb Raider JK Palace Lye 02 Jones £250
23 Tomb Raider FB Classic Sutton 03 Allen £300
23 Tomb Raider NM Roxy Longden 03 Allen £290
45 Cats & Dogs TF Odeon Croyden 01 Smith £390
45 Cats & Dogs LM Odeon Sutton 03 Allen £310
56 Colditz TF Odeon Croyden 01 Smith £310
56 Colditz NM Roxy Longden 03 Allen £250

This is the relation

R(FID, Title, CID

, Cname, Loc, MID, MName, Takings)

Title is only dependent on FID
Cname, Loc, MID, MName are only dependent on CID
Takings is dependent on both FID and CID

Therefore 2NF is

FILM(FID
CINEMA(

, Title)
CID

TAKINGS(
, Cname, Loc, MID, MName)

FID, CID

, Takings)

In Cinema, the non-key attribute MName is dependent on MID. This means that it is
transitively dependent on the primary key. So we must move this out to get the 3NF
relations

FILM(FID
CINEMA(

, Title)
CID

TAKINGS(
, Cname, Loc, MID)

FID, CID
MANAGER(

, Takings)
MID

, MName)

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 12 of 30

3.6 (c) Entity-Relationship (E-R) Diagrams

Entity-Relationship (E-R) diagrams can be used to illustrate the relationships between
entities. In the earlier example we had the four relations

DELNOTE(Num
CITY_COUNTRY(

, CustName, City)
City

PRODUCT(
, Country)

ProdID
DEL_PROD(

, Description)
Num, ProdID

)

In an E-R diagram DELNOTE, CITY_COUNTRY, PRODUCT and DEL_PROD are
called entities. Entities have the same names as relations but we do not usually show
the attributes in E-R diagrams.

We now consider the relationships between the entities.

Each DELNOTE can be for only one CITY_COUNTRY

because a City only occurs once on DELNOTE

Each CITY_COUNTRY may have many DELNOTE
because a City may occur on more than one DELNOTE

Each DELNOTE will have many DEL_PROD
Num in DELNOTE could occur more than once in DEL_PROD

Each DEL_PROD will be for only one DELNOTE
because each Num in DEL_PROD can only occur once in DELNOTE

Each PRODUCT will be on many DEL_PROD
PRODUCT can occur more than once in DEL_PROD

Each DEL_PROD will have only one PRODUCT
because each ProdID in DEL_PROD can only occur once in PRODUCT

The statements show two types of relationship. There are in fact four altogether.
These are

one-to-one represented by

one-to-many represented by

many-to-one represented by

many-to-many represented by

Fig. 3.6 (c)1 is the E-R diagram showing the relationships between DELNOTE,
CITY_COUNTRY, PRODUCT and DEL_PROD.

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 13 of 30

Fig. 3.6 (c)1

If the relations are in 3NF, the E-R diagram will not contain any many-to-many
relationships. If there are any one-to-one relationships, one of the entities can be
removed and its attributes added to the entity that is left.

Let us now look at our solution to the cinema problem which contained the relations

FILM(FID
CINEMA(

, Title)
CID

TAKINGS(
, Cname, Loc, MID)

FID, CID
MANAGER(

, Takings)
MID

, MName)

in 3NF.

We have the following relationships.

connected by FID

connected by CID

connected by MID

These produce the ERD shown in Fig. 3.6 (c)2.

DELNOTE

CITY_COUNTRY DEL_PROD

PRODUCT

FILM TAKINGS

CINEMA TAKINGS

MANAGER CINEMA

takes

is for

takes

is for

managed
by

manages

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 14 of 30

Fig. 3.6 (c)2

In this problem we actually have the relationship

CINEMA shows many FILMs

FILM is shown at many CINEMAs

That is

But this cannot be normalised to 3NF because it is a many-to-many relationship.
Many-to-many relationships are removed by using a link entity as shown here.

If you now look at Fig. 3.6.c.2, you will see that the link entity is TAKINGS.

Form Design

Section 2.1 (c) discussed the design of screens and forms. All that was said in that
section applies to designing forms for data entry, data amendments and for queries.
The main thing to remember when designing screen layouts is not to fill the screen
too full. You should also make sure that the sequence of entering data is logical and
that, if there is more than one screen, it is easy to move between them.

Let us consider a form that will allow us to create a new entry in DELNOTE which
has the attributes Num, CustName, City. Num is the key and, therefore, it should be
created by the database system. Fig. 3.6 (c)3 shows a suitable form.

CINEMA

MANAGER TAKINGS

FILM

CINEMA FILM

CINEMA FILM LINK_ENTITY

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 15 of 30

Fig. 3.6 (c)3

With this form, if a new City is input the user can input the Country and the
City_Country table will be updated. If the City exists in the database, then Country
will appear automatically.

Now let us design a form to allow a user to input a customer's order. In this case we
shall need to identify the customer before entering the order details. This is best done
by entering the customer's ID. However, this is not always known. An alternative, in
this case, is to enter the customer's name. The data entry form should allow us to
enter either of these pieces of data and the rest of the details should appear
automatically as a verification that the correct customer has been chosen. Fig. 3.6(c)4
shows a form that is in two parts. The upper part is used to identify the customer and
the lower part allows us to enter each item of data that is on the customer's order.

Entered by
the system

Appears
automatically
when City is
completed if
in database. Can use

drop down
lists to

complete

Add details
to database

Cancel and
leave blank
form on the
screen

Close the
form

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 16 of 30

Fig. 3.6 (c)4

Notice how certain boxes are automatically completed. Also, because the form
requires a customer ID (Number), orders can only be taken for customers whose
details are on the database. This ensures the entry of customer details before an order
can be entered. In order to be consistent, the positions of the boxes for customer
details is the same on the Order Entry form as on the Add New Delivery Note form.
It is usual for both these forms to be password protected. This ensures that only
authorised personnel can enter data into the database.

This is a very simple example. Suppose the customer's ID is not known. We have
seen one way of overcoming this which satisfies the needs of the problem given.
Some systems allow the post code to be entered in order to identify the address. In
this case, the street, town and county details are displayed and the user is asked for the
house number. Other systems allow the user to enter a dummy ID such as 0000 and
then a list of customers appears from which the user can choose a name.
Alternatively, part of the name can be entered and then a short list of possible names
is displayed. Again the user can choose from this list.

Enter either the customer's number OR
the customer's name. The other three
boxes will then be completed
automatically by the system.

Entered by
the user

Entered by
the system

Customer
details

Order
details

Add item
to order
and clear
the order
detail part
of the form

Clear all
boxes
ready for a
new
customer

Close the
Order
Entry form

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 17 of 30

Deletion and modification screens are similar, but must be password protected as
before so that only authorised personnel can change the database.

A query screen should not allow the user to change the database. Also, users should
only be allowed to see what they are entitled to see. To see how this may work, let us
consider a query requesting the details of all the cinemas in our second example. The
view presented to the users will give details of cinema names. locations, manager
names and film names as shown in Fig, 3.6 (c)5.

Cinema Location Manager Film
Odeon Croyden Smith Jaws
Embassy Osney Smith Jaws
Palace Lye Jones Jaws
Odeon Croyden Smith Tomb Raider
Embassy Osney Smith Tomb Raider
Palace Lye Jones Tomb Raider
Classic Sutton Allen Tomb Raider
Roxy Longden Allen Tomb Raider
Odeon Croyden Smith Cats & Dogs
Odeon Sutton Allen Cats & Dogs
Odeon Croyden Smith Colditz
Roxy Longden Allen Colditz

Fig, 3.6 (c)5

However, another user may be given the view shown in Fig. 3.6 (c)6.

Cinema Location Manager Film Takings
Odeon Croyden Smith Jaws £350
Embassy Osney Smith Jaws £180
Palace Lye Jones Jaws £220
Odeon Croyden Smith Tomb Raider £430
Embassy Osney Smith Tomb Raider £200
Palace Lye Jones Tomb Raider £250
Classic Sutton Allen Tomb Raider £300
Roxy Longden Allen Tomb Raider £290
Odeon Croyden Smith Cats & Dogs £390
Odeon Sutton Allen Cats & Dogs £310
Odeon Croyden Smith Colditz £310
Roxy Longden Allen Colditz £250

Fig. 3.6 (c)6

Another user may be given all the details, including the cinema and manager IDs.
Notice that the columns do not have to have the same names as the attributes in the
database. This means that these names can be made more user friendly.

In order to create the query a user will normally be presented with a data entry form.
This form may contain default values, as shown in Fig. 3.6 (c)7, which allows a user

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 18 of 30

to list cinemas that have takings for films between set limits. This film allows users
to choose all the films, all the cinemas and all locations or to be more selective by
choosing from drop down lists. When the user clicks the OK button a table, such as
those given above, will appear.

Fig. 3.6 (c)7

In this Figure, the boxes are initially completed with default values. In this case, if
the OK button is clicked, all cinemas and films would be listed. However, suppose
we want to know which films at the Odeon, Croyden took less than £400. The user
could modify the boxes, using drop down lists, as shown in
Fig. 3.6 (c)8.

Fig. 3.6 (c)8

When the OK button is clicked, a report like that shown in Fig. 3.6(c)9 would appear
together with a button allowing the user to print the results or return to the query
form.

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 19 of 30

Fig. 3.6 (c)9

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 20 of 30

3.6 (d) Advantages of Using a Relational Database (RDB)

Advantage Notes
Control of data redundancy Flat files have a great deal of data redundancy that

is removed using a RDB.
Consistency of data There is only one copy of the data so there is less

chance of data inconsistencies occurring.
Data sharing The data belongs to the whole organisation, not to

individual departments.
More information Data sharing by departments means that

departments can use other department's data to find
information.

Improved data integrity Data is consistent and valid.
Improved security The database administrator (DBA) can define data

security – who has access to what. This is enforced
by the Database Management System (DBMS).

Enforcement of standards The DBA can set and enforce standards. These
may be departmental, organisational, national or
international.

Economy of scale Centralisation means that it is possible to
economise on size. One very large computer can
be used with dumb terminals or a network of
computers can be used.

Improved data accessibility This is because data is shared.
Increased productivity The DBMS provides file handling processes instead

of each application having to have its own
procedures.

Improved maintenance Changes to the database do not cause applications
to be re-written.

Improved back-up and recovery DBMSs automatically handle back-up and
recovery. There is no need for somebody to
remember to back-up the database each day, week
or month.

Disadvantages are not in the Specification for this Module.

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 21 of 30

3.6 (e) The Purpose of Keys

We have used keys in all our earlier examples to uniquely identify tuples (rows) in a
relation (table). A key may consist of a single attribute or many attributes, in which
case it is called a compound key.

The key used to uniquely identify a tuple is called the primary key.

In some cases more than one attribute, or group of attributes, could act as the primary
key. Suppose we have the relation

EMP(EmpID, NINumber, Name, Address)

Clearly, EmpID could act as the primary key. However, NINumber could also act as
the primary key as it is unique for each employee. In this case we say that EmpID
and NINumber are candidate keys. If we choose EmpID as the primary key, then
NINumber is called a secondary key.

Now look at these two relations that we saw in Section 4.6.4.

CINEMA(CID
MANAGER(

, Cname, Loc, MID)
MID

, MName)

We see that MID occurs in CINEMA and is the primary key in MANAGER. In
CINEMA we say that MID is the foreign key.

An attribute is a foreign key in a relation if it is the primary key in another relation.
Foreign keys are used to link relations.

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 22 of 30

3.6 (f) Access Rights

Sometimes it must not be possible for a user to access the data in a database. For
example, in a banking system, accounts must be updated with the day's transactions.
While this is taking place users must not be able to access the database. Thus, at
certain times of the day, users will not be able to use a cash point. Another occasion
is if two people have a joint account and one of them is withdrawing cash from a cash
point. In this case the one user will be able to change the contents of the database
while the other will only be allowed to query the database.

Similarly, while a database system is checking stock for re-ordering purposes, the
POS terminals will not be able to use the database as each sale would change the
stock levels. Incidentally, there are ways in which the POS terminals could still
operate. One is to only use the database for querying prices and to create a
transaction file of sales which can be used later to update the database.

It is often important that users have restricted views of the database. Consider a large
hospital that has a large network of computers. There are terminals in reception, on
the wards and in consulting rooms. All the terminals have access to the patient
database which contains details of the patients' names and addresses, drugs to be
administered and details of patients' illnesses.

It is important that when a patient registers at reception the receptionist can check the
patient's name and address. However, the receptionist should not have access to the
drugs to be administered nor to the patient's medical history. This can be done by
means of passwords. That is, the receptionists' passwords will only allow access to
the information to which receptionists are entitled. When a receptionist logs onto the
network the DBMS will check the password and will ensure that the receptionist can
only access the appropriate data.

Now the terminals on the wards will be used by nurses who will need to see what
drugs are to be administered. Therefore nurses should have access to the same data as
the receptionists and to the information about the drugs to be given. However, they
may not have access to the patients' medical histories. This can be achieved by giving
nurses a different password to the receptionists. In this case the DBMS will recognise
the different password and give a higher level of access to the nurses that to the
receptionists.

Finally, the consultants will want to access all the data. This can be done by giving
them another password.

All three categories of user of the database, receptionist, nurse and consultant, must
only be allowed to see the data that is needed by them to do their job.

So far we have only mentioned the use of passwords to give levels of security.
However, suppose two consultants are discussing a case as they walk through
reception. Now suppose they want to see a patient's record. Both consultants have
the right to see all the data that is in the database but the terminal is in a public place
and patients and receptionists can see the screen. This means that, even if the

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 23 of 30

consultants enter the correct password, the system should not allow them to access all
the data.

This can be achieved by the DBMS noting the address of the terminal and, because
the terminal is not in the right place, refusing to supply the data requested. This is a
hardware method of preventing access. All terminals have a unique address on their
network cards. This means that the DBMS can decide which data can be supplied to a
terminal.

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 24 of 30

3.6 (g) Database Management System (DBMS)

Let us first look at the architecture of a DBMS as shown in Fig. 3.6 (g)1.

Fig. 3.6 (g)1

At the external level there are many different views of the data. Each view consists of
an abstract representation of part of the total database. Application programs will use
a data manipulation language (DML) to create these views.

At the conceptual level there is one view of the data. This view is an abstract
representation of the whole database.

The internal view of the data occurs at the internal level. This view represents the
total database as actually stored. It is at this level that the data is organised into
random access, indexed and fully indexed files. This is hidden from the user by the
DBMS.

The DBMS is a piece of software that provides the following facilities.

The DBMS contains a data definition language (DDL). The DDL is used, by the
database designer, to define the tables of the database. It allows the designer to
specify the data types and structures and any constraints on the data. The Structured
Query Language (SQL) contains facilities to do this. A DBMS such as Microsoft
Access allows the user to avoid direct use of a DDL by presenting the user with a
design view in which the tables are defined.

The DDL cannot be used to manipulate the data. When a set of instructions in a DDL
are compiled, tables are created that hold data about the data in the database. That is,
it holds information about the data types of attributes, the attributes in a relation and

EXTERNAL
LEVEL
(Individual
users)

CONCEPTUAL
LEVEL
(Integration of
all user views)

INTERNAL
LEVEL
(Storage view)

User 2 User 1 User 3

Company Level

DISK/FILE
organisation

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 25 of 30

any validation checks that may be required. Data about data is called meta-data.
These tables are stored in the data dictionary that can be accessed by the DBMS to
validate data when input. The DBMS normally accesses the data dictionary when
trying to retrieve data so that it knows what to retrieve. The data dictionary contains
tables that are in the same format as a relational database. This means that the data
can be queried and manipulated in the same way as any other data in a database.

The other language used is the data manipulation language (DML). This language
allows the user to insert, update, delete, modify and retrieve data. SQL includes this
language. Again, Access allows a user to avoid directly using the DML by providing
query by example (QBE) as was mentioned in Section 3.5 (j).

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 26 of 30

Appendix: Designing Databases

Although not stated as part of the syllabus, students may find the following to be of
value, particularly when normalising a database.

Consider the following problem.

A company employs engineers who service many products. A customer may own
many products but a customer's products are all serviced by the same engineer. When
engineers service products they complete a repair form, one form for each product
repaired. The form contains details of the customer and the product that has been
repaired as well as the Engineer's ID. Each form has a unique reference number.
When a repair is complete, the customer is given a copy of the repair form.

The task is to create a database for this problem. In order to do this, you must first
analyse the problem to see what entities are involved. The easiest way to do this is to
read the scenario again and to highlight the nouns involved. These are usually the
entities involved. This is done here.

A company employs engineers who service many products. A customer may own
many products but a customer's products are all serviced by the same engineer. When
engineers service products they complete a repair form, one form for each product
repaired. The form contains details of the customer and the product that has been
repaired as well as the engineer's ID. Each form has a unique reference number.
When an engineer has repaired a product, the customer is given a copy of the repair
form.

This suggests the following entities.

engineer
product
customer
repair form

Now we look for the relationships between the entities. These can usually be
established by highlighting the verbs as done here.

A company employs engineers who service many products. A customer may own
many products but a customer's products are all serviced by the same engineer. When
engineers service products they complete a repair form, one form for each product
repaired. The form contains details of the customer and the product that has been
repaired as well as the Engineer's ID. Each form has a unique reference number.
When a repair is complete, the customer is given a copy of the repair form.

This suggests the following relationships.

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 27 of 30

Relationship Type Notes
engineer services product many-to-many An engineer services many products

and a product can be serviced by
many engineers. For example,
many engineers service washing
machines.

customer owns product many-to-many A customer may own many products
and a product can be owned by
many customers. For example,
many customers own washing
machines.

engineer completes form one-to-many An engineer completes many forms
but a form is completed by only one
engineer.

customer is given form one-to-many A customer may receive many
forms but a form is given to only
one customer.

product is on form one-to-many Only one product can be on a form
but a product may be on many
different forms.

Which leads to the entity relationship diagram (ERD).

There are two many-to-many relationships that must be changed to one-to-many
relationships by using link entities. This is shown below.

ENGINEER

PRODUCT FORM

CUSTOMER

services

serviced
by

completes

completed
by

given to

is given

owned by

owns

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 28 of 30

This suggests the following relations (not all the attributes are given).

ENGINEER(EngineerID
ENG_PROD(

, Name, …)
EngineerID, ProductID

PRODUCT(
)

ProductID
CUST_PROD(

, Description, …)
CustomerID, ProductID

CUSTOMER(
)

CustomerID
FORM(

, Name, …)
FormID

, CustomerID, EngineerID, …)

These are in 3NF, but you should always check that they are.

Another useful diagram shows the life history of an entity. This simply shows what
happens to an entity during its life. An entity life history diagram is similar to a JSP
diagram (see Section 3.5 (c)). The next diagram shows the life history of an engineer
in our previous problem.

ENGINEER

PRODUCT FORM

CUSTOMER

services

serviced
by

completes

completed
by

given to

is given

owned by

ENG_PROD

CUST_PROD

owns

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 29 of 30

This tells us

1. A new record for an engineer is created when an engineer joins the Company.

2. While the engineer is working for the Company, he/she may change their
name, address or telephone number as many times as is necessary (hence the
use of the *).

3. When the engineer leaves the Company, the main life-cycle ends and the
engineer's record is updated to indicate they no longer work for the Company.

4. 12 months after the engineer has left the Company his/her record is archived
and removed from the database.

Similar diagrams can be created for the other entities.

Detail *
changes

Address
change

Name change Telephone
number
change

Works for
Company

Leaves
Company

Starts work 12 months
elapse

Engineer

https://sites.google.com/site/computing9691/

https://sites.google.com/site/computing9691/
 Page 30 of 30

3.6 Example Questions

1. Explain what is meant by a table being in second normal form.

2. Every student in a school belongs to a form. Every form has a form tutor and all

the form tutors are members of the teaching body.
Draw an entity relationship diagram to show the relationships between the four
entities STUDENT, FORM, TUTOR, TEACHERS (6)

3. Explain what is meant by a foreign key. (3)

